If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-19y=0
a = 5; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·5·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*5}=\frac{0}{10} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*5}=\frac{38}{10} =3+4/5 $
| 86-5n=9n+93 | | 7x+9=x+27 | | 9r-6=4r+19=8r+3 | | -9(p-6)-2=-p+8 | | 3x+17=-8(x+72 | | 16x+40=7x+21-15 | | b=16+2(4-b)+3 | | -(11-z)=7 | | 5-3x=-5(x-62) | | x/3+12=12 | | (x/3)+12=12 | | x+.2x=720 | | -36z-3=27z-24+4 | | 5/8x+3/8=2 | | -9x-83=9x-9 | | 8x-4/7=2 | | -6(x+2)=16 | | 5y+6=5y-10 | | 5v^2-v=4 | | -2/(y-5)=-5 | | 65x=0 | | 2x-2(3x+4)=16-7x | | 8^(3x+4)=757 | | (5-1/4x)=10-(x-1) | | 15y-20+12=37 | | 4y^2-5y=19y | | 10c+7-5c=-13 | | 8=-7+v | | 50=3/4n-18 | | 5-1/4x=10-(x-1) | | 3/5(7)-5+x-4=-1 | | 5x/10=-5/12 |